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ABSTRACT

Object tracking has achieved great advances in the past few years

and has been widely applied in vision-based application. Nowa-

days, deep convolutional neural network has taken an important

role in object tracking tasks. However, its enormous model size

and massive computation cost have became the main obstacle for

deployment of such powerful algorithm in low power and resource

limited embedded system, such as FPGA. Due to the populariza-

tion of the power-sensitive mobile platform, low power real-time

tracking solution is strongly required. In order to address these

challenges, we propose a low power and energy-efficient object

tracking FPGA implementation based on a newly proposed bina-

rized depthwise separable deep convolutional neural network. It

can significantly reduce the model size and computation complex-

ity simultaneously utilizing binarized (i.e., +1 and -1) depthwise

separable convolution kernel and our proposed trainable threshold

group binarization activation function. It can completely converts

the dot product and accumulation based convolution operations

into bit-wise XNOR and bit-count operations, while achieving state-

of-the-art accuracy. Our proposed binarized depthwise separable

model achieves ∼57% Intersection over Union (IOU) on DJI object

tracking dataset with only ∼143.9Kb model parameter size. We then

deploy our proposed model into the Xilinx PYNQ Z1 board with

only 4.9Mb on-chip RAM. The experiment results show that our

FPGA implementation achieves 11.1 frames per second for object

tracking with only 2.61W.
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1 INTRODUCTION

In the last couple years, the climate of Artificial Intelligence, es-

pecially deep learning, has swept the various domains owing to

its prominent performance over traditional methods [7]. As of our

interest, object tracking is a intriguing topic which is the core func-

tion of many real-world applications. In virtue of deep learning

technique, a trained deep neural network (DNN) can achieve up to
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100 frames per second [5]. Comparing with traditional object track-

ing algorithm, deep learning has more powerful ability to extract

feature from data. However, it relies on massive operations and

model size, which makes the mobile device deployment encounter

great challenges in terms of both computation and storage capa-

bility. Recently, in DAC Design Contest 2018 [3], many low power

FPGA object tracking designs have been proposed to address such

high computation cost and memory usage.

The contributions of this work mainly consist of two folds: 1) In

the algorithm perspective, we propose a new method to optimize

YOLO based object tracking deep neural network simultaneously

using approximate weight binarization, trainable threshold group

binarization activation function and depthwise separable convolu-

tion methods, to greatly reduce computation complexity and model

size; 2) In the hardware part, we propose a new corresponding

deep neural network accelerator architecture in FPGA to reduce

latency, communication between off-chip and on-chip memory, and

to maximize throughput according to hardware resources.

2 BINARIZED DEPTHWISE SEPARABLE DEEP
NEURAL NETWORK FOR OBJECT
TRACKING

2.1 Depthwise Separable Convolution

Recently, the depthwise separable convolution [10] has been proven

it’s efficiency in many state-of-the-art deep neural networks, such

as MobileNet [6] and BD-NET [4], which factorize a conventional

convolution layer into a depthwise convolution and a convolution

with 1x1 convolution called pointwise convolution.
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Figure 1: Data-flow for depthwise separable convolution

layer. Normally, the channel expansionm is 1.[4]

The data flow of depthwise separable convolution is shown in

fig. 1. In the depthwise convolution layer, each channel of input

tensor performs convolution with p ·m kernels in the size of kh×kw
(i.e. kernel-height and width) correspondingly, which produces p ·m
feature maps. m is defined as channel expansion. Those generated

feature maps are concatenated along its depth dimension as tensor

in size of h ×w × (p ·m) which is taken as the input of pointwise

convolution layer. The operation of such depthwise convolution
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can be mathematically described as:

Fj ·p+i = Xi ∗Wj ·p+i , j ∈ [0,m − 1] (1)

where i ∈ [1, p] is the index of depth of input tensor X ∈ Rh×w×p .

On the contrary to the distinctive depthwise convolution, pointwise

layer is just normal spatial-convolution layer with 1×1 convolution

kernel size. The ratio of computational cost between depthwise sep-

arable convolution and conventional convolution can be calculated

as:
h ·w · kh · kw · p ·m + h ·w · p ·m · q

h ·w · kh · kw · p · q
=
m(kh · kw + q)

kh · kw · q
(2)

such ratio is approximated to m/(kh · kw) when the number of

output channels q >> kh · kw . In our work, we set the channel

expansion m to 1 and the kernel size kh × kw is 3 × 3. In this case,

the computation cost is only 1/9 of the normal spatial-convolution.

Table 1: Architecture of Our Model

Layer Filter Shape Input Shape Kbits

Conv1 dw 3x3x3 160x320 0.864

BinConv2 64x3x1x1 160x320 0.1875

MaxPool 80x160

BinConv3 dw 3x3x64 dw 80x160 0.5625

BinConv4 128x64x1x1 dw 80x160 8

MaxPool 40x80

BinConv5 dw 3x3x128 dw 40x80 1.125

BinConv6 128x128x1x1 40x80 16

MaxPool 20x40

BinConv7 dw 3x3x128 dw 20x40 1.125

BinConv8 128x128x1x1 20x40 16

Conv9 25x128x1x1 20x40 100

Total 143.864

IOU (DJI) 57%

2.2 Our Model
2.2.1 Neural Network Structure. In this section, we first present

our binarized depthwise separable convolution neural network

for object tracking. Except that the first and last layers are real-

value tensors, all the rest layers are binarized in both weight and

activation. Conv9 shown in the table 1 is fully-connected layer

for prediction. Inspired by YOLOv2[9], we use the anchor boxes

method to predict bounding box location and confidence score to

reflect how precise the bounding box is. In this work, we define

confidence as IOU (Intersection over union) which is an evaluation

metric that yielded by dividing the area of overlap by the area of

union between the predicted bounding box and the ground-truth

bounding box. We divide the input images into a 20x40 grid, where
each grid cell predicts 5 bounding boxes and computes confidence

values for those boxes.

2.2.2 Weight Binarization. To binarize convolution kernel weights,

we employ the popular approximation strategy for weight binariza-

tion first proposed in [8], which estimates the real-value weight

kernel using a binary weight filter (i.e. -1 and +1) and a scaling

factor E. The scaling factor should equal to the mean of absolute

values of whole weight filters in current layer.

2.2.3 Trainable Threshold Group Binarization Activation Function

and XNOR Convolution. In order to improve the accuracy while

maintaining binary activation and XNOR based convolution opera-

tion (i.e. requiring both activation and weight in binary state), we

propose a trainable threshold group binarization activation func-

tion, as shown in fig. 2, to replace original BinActive-XNORConv

combination to a group of parallel BinActive-XNORConv modules,

where each BinActive function has different trainable threshold vk
to generate binary x ′

k
from x .

x ′
k = Siдn(x −vk ) (3)
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Figure 2: Proposed trainable threshold group binarization

activation function
where trainable threshold v is indexed by k , and k is a integer

ranging from 1 to n, where n=5 in this work. During the training

of deep neural network, such threshold vk is also considered as

a trainable parameter similar kernel weight. However, during the

training, the sign function in eq. (3) owns zero derivatives almost

everywhere, which makes it impossible to calculate the gradient

using chain rule in backward path (i.e. training phase). Thus, the

Straight-Through Estimator (STE) [1, 2] is applied to calculate gra-

dient in this work. In the backward path, the input gradient of

binarization activation function clones the gradient at output, if it

is in the range from -1 to +1. Otherwise, the gradient is cancelled

to preserve training performance:

Backward :
∂д

∂x
=

{
∂д
∂x ′ i f |x | ≤ 1

0 otherwise
(4)

During training, to keep the distribution of activation relatively

stable, batch-normalization layer is inserted before binarization

activation, which can normalize the feature maps to zero mean and

unit variance. Moreover, to properly initialize vk during training

phase, we use a input sample to obtain the distribution of interlayer

tensor then manually setup the initial values. It is worth to note

that all the parallel XNORConv layer in each module share the

same binary weights for XNOR based convolution computation.

Therefore, our method doesn’t increase the overall model size.

2.2.4 Binarized Depthwise Separable Convolution. In this subsec-

tion, we apply previously discussed approximation weight bina-

rization and our proposed trainable threshold group binarization

activation for both depthwise convolution and pointwise convolu-

tion. In this case, except the first and last layer, the weights of all

layers are binarized with a scaling factor as well as activations.

The weight and activation binarization function can be replaced

by XNOR operation.The computation of depthwise convolution can

be reformatted as:

BinFj ·p+i = Ep∗
n∑

k=1

2∗XNOR(Xi −vi,k ,W j ·p+i )−nN , j ∈ [0,m−1]

(5)

where N is the number of corresponding weight filters to create one

output value which equals to kh ∗ kw in depthwise convolution.

2.2.5 Converting ReLU-BatchNorm-Binarization Activation-Weight

Scaling Factor to Threshold Function. In this work, we propose to

integrate weight scaling factor with ReLu-BatchNorm-Binarization

activation, which could totally eliminate multiplication in our bina-

rized depthwise separable convolution.

2
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Batch Normalization layer can be considered an affine func-

tion y = kx + b. Therefore, the cascaded BatchNorm-Binarization

Activation-Weight scaling factor can be described as:

y =

{
E ∗ Siдn(kx + b) i f x ≥ 0

b otherwise
(6)

In the eq. (6), x means the output tensor BinF from previous con-

volution layer according to eq. (5). E presents the weight scaling

factor. In order to avoid multiplication and subtraction in eq. (5).

We use x ′′ to represent n sum of the XNOR(X ,W ), so the x can be

described as:x = 2 ∗ x ′′ − nN .
The eq. (6) can be realized through sign function (SiдnΔ()) with

adjusted threshold Δ, where SiдnΔ(x) = +1 when x ≥ Δ and

SiдnΔ(x) = 0 when x < Δ. Therefore, eq. (6) can be rewritten as:

y =

{
SiдnΔ(x

′′) i f x ′′ ≥ nN/2
b otherwise

(7)

where Δ = −b/(Ek).

3 FPGA IMPLEMENTATION

3.1 Overall Architecture

BinConvDw 

On-Chip Memory(BRAM)

AXI-BUSOff-Chip 
Memory
(DDR3) 

ARM 
Cortex A9 
Processor

On-ChipOff-Chip

BinConvPw 

Conv1

Conv9

muxdemux
Max 
Pool

Figure 3: Overall Architecture
The overall architecture of our mapped model in FPGA is shown

in fig. 3. There are totally four processing elements (PE) corre-

sponding to four types of convolution layer respectively, namely

Conv1, BinDw, BinPw and Conv9. Except first and last layer, all the

rest binarized depthwise convolution layers reuse BinDw kernel

which implement bitwise XNOR and bitcount operations. In order

to further reduce communication between on-chip and off-chip,

and maximize the usage of on-chip resources, BinDw and BinPw

are allocated different hardware resources. In addition, it is worth

to note that, benefiting from our deeply compressed model size

(144Kbits), all of the network parameters can be stored in FPGA

on-chip RAM. As widely known, communication between on-chip

and off-chip memory is power hungry and time consuming. Our

fully on-chip BNN could greatly reduce such communication and

leaves more memory bandwidth for input images.

3.2 Hardware Optimization

BN Bin
Active ReLUBin

ConvDw

PE

BN Bin
Active ReLUBin

ConvPw

Figure 4: Hardware Block Architecture
3.2.1 Block Optimization. In order to more efficiently map model

to FPGA, we further redefine the block architecture which makes it

more hardware friendly without changing the whole pipeline archi-

tecture. fig. 4 shows the new processing element (PE) consisting of

different computation components. Our optimized new PE consists

of BinConv-ReLU and BatchNorm-BinActive. By redesigning PE in

this way, it could be found that the outputs of each PE are in binary

format since they are the direct outputs from binarized activation

function (i.e. BinActive). Therefore, such optimization method guar-

antees inputs and outputs of each processing elements are both

binary data, which greatly reduces the inter-layer communication

data size. Moreover, such design is also necessary since we con-

vert integrated ReLU-BarchNorm-BinActive into a more hardware

friendly threshold function as described in eq. (7).

20
4016

PE

PE

16

Figure 5: Feature Maps Group

3.2.2 FeatureMapGroup. Since the featuremaps of different layers

have different dimension, which means the computation pattern

varies betwen layers. It is impossible for the whole feature maps to

reuse ConvDw and ConvPw processing element. In order to solve

this problem, we divide every feature map into the same size of

groups as shown in fig. 5. Feature map groups are loaded into

processing element for both depthwise and pointwise convolution,

which will then create one corresponding output feature map group,

one by one in pipeline.table 1 gives an example which using 20 ×

40 × 16 as the dimension of feature map groups.

3.2.3 Processing Element. The detailed processing element archi-

tecture is shown in fig. 6, which mainly consists of XNOR units,

popcount units and following threshold units. As discussed in sec-

tion 2.1, depthwise convolution and pointwise convolution have

different computation cost, therefore the input buffer and XNOR

unit contain different computation capacity. Processing elements

are core computing unit to implement convolution operation. It can

be seen that XNOR-popcount-threshold could compute in a parallel

manner, which will load different weights(i.e. kernels) at the same

clock cycle. Therefore, the number of parallel XNOR units, which is

16 in our work, corresponds to the output feature maps. As shown

in fig. 7, depthwise and pointwise processing element can achieve

16× 5 and 16× 16× 5 computation in parallel respectively. Such op-

erations could be easily implemented using LUTs in FPGA and are

much more energy efficient compared to conventional dot-product,

accumulation and Batch-Norm operations.

XNOR unit

XNOR unit

XNOR unit

Popco
unt

Popco
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Figure 6: Processing Element Architecture
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Table 2: COMPARISONWITH OTHER OBJECT TRACKING

ON THE FPGA[3]
Name IOU Power FPS ES TS

TGIIF 0.62 4.2 11.955 1.0318 1.2674

SystemsETHZ 0.49 2.45 25.968 1.3976 1.1794

iSmart2 0.57 2.59 7.349 1.0297 1.1636

traix 0.61 3.11 5.445 0.8869 1.1523

hwac-object-tracker 0.52 3.66 4.935 0.8155 0.932

Ours 0.57 2.61 11.1 1.1477 1.224

4 EXPERIMENTAL RESULTS
4.1 Experimental Results

To compare our work with other recent works. table 2 lists perfor-

mance comparison with top 5 object tracking algorithms on DAC

Design Contest 2018 [3] that all implement on the same PYNQ

platform and test on the same DJI drone dataset. In order to evalu-

ate the performance of different trackers, two evaluation metrics

are proposed, ES and TS . ES means the energy consumption score

which is mathematical described as: 1 + 0.2 × log2(
Ē
E ), where Ē

represents the average energy consumption of all trackers and E
is the energy consumption for current work. TS is the final score

which combines IOU and ES together, defining as: IOU × (1 + ES).
It is obvious that our final TS score is ranked in the second place,

which is only 0.04 smaller than TGIIF.

From pespective of model size and data type, TGIIF uses 8bit

fixed point weight and activation. SystemsETHZ has full precision

weights for the first and last layer, binary weights and 5 bit fixed

point activation for the rest layers. 8bit fixed point weights and

16 bit fixed point activation are used in iSmart2. However, in our

work, except the first and last layer use 32bit and 16bit fixed point

weights and activations respectively, all the intermediate layers are

binarized weights and activations (i.e. +1 and -1). Benefiting from

depthwise separable convolution and trainable threshold group

binarization activation, our model size is further compressed to

143.864Kbits as shown in table 1. From computation complexity

perspective, as discussed in section 3.2. We use five parallel bit-wise

XNOR and bit-count operations instead of multiplication and ac-

cumulation operations. In addition, taking advantage of depthwise

separable convolution, the computation cost is only 1/9 of the nor-

mal spatial-convolution. On the performance side, The top 2 track-

ers have higher FPS (frame per second) than our work as shown

in table 2. TGIIF divides whole workflow into multiple threads

which can process multiple images in pipeline in the system level

perspective. SystemsETHZ utilizes mini-batch images as the input

of the hardware accelerator which also achieves multiple images

processing in pipeline. In our future work, we will keep optimizing

our speed in latency or FPS.

Figure 8: PYNQ Power Measurement

5 CONCLUSION

In this paper, we propose a new method to optimize YOLO based

object tracking deep neural network simultaneously using approxi-

mate weight binarization, trainable threshold group binarization

activation function and depthwise separable convolution meth-

ods, to greatly reduce computation complexity and model size. For

FPGA hardware optimization, we propose a new corresponding

deep neural network accelerator architecture in FPGA to reduce

latency,communication between off-chip and on-chip memory, and

to maximize throughput according to hardware resources. Our pro-

posed model achieves∼57% Intersection over Union (IOU) on DJI

objecttracking dataset with only∼143.9Kb model parameter size.

We then deploy our model into the Xilinx PYNQ Z1 board with

only 4.9Mb on-chip RAM. The experiment results show it achieves

11.1 frames per second for object tracking with only 2.61W.
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